geometria - gli insiemi
Nella matematica si usa il vocabolo insieme per indicare un qualunque raggruppamento di enti comunque scelti. Ad esempio si parla dell'insieme dei numeri naturali, dell'insieme dei triangoli , dell'insieme dei punti di un cerchio, dell'insieme dei vertici di un poligono.
Gli enti che, nel loro complesso formano un insieme si dicono elementi di quell'insieme.
Un insieme si dice finito se l'elenco dei suoi insiemi ha un termine, infinito in caso contrario. Ad esempio è finito l'insieme dei vertici di un poligono mentre è infinito l'insieme dei triangoli.
Un insieme finito può venire indicato racchiudendo tra i due segni di parentesi graffa gli elementi che lo contengono
A = {1,3,5}
Noi intendiamo significare che un insieme A ha per elementi i primi tre numeri naturali dispari.
Fra gli insiemi si considera anche quello privo di elementi o insieme vuoto che viene indicato con il simbolo
Ø Ad esempio è vuoto un insieme di triangoli aventi due angoli retto oppure l'insieme dei punti comuni a due circonferenze concentriche di raggio diverso.
Se consideriamo l'insieme T dei triangoli e l'insieme P dei poligoni ci accorgiamo che si verifica una situazione particolare: poiché ogni triangolo è pure un poligono si ha che ogni elemento di T è anche elemento di P. Si dice che T è sottoinsieme di P ovvero T è incluso in P.
In generale un insieme A è sottoinsieme di un altro insieme B se ogni elemento di A è pure elemento di B. Ad esempio l'insieme
{2,4} è incluso nell'insieme {2,4,6,8}l'insieme delle lettere della parola RAMO è sottoinsieme delle lettere della parola AMORE.
Nessun commento:
Posta un commento