Visualizzazione post con etichetta MOLTIPLICAZIONE. Mostra tutti i post
Visualizzazione post con etichetta MOLTIPLICAZIONE. Mostra tutti i post

mercoledì 16 settembre 2015

LA MOLTIPLICAZIONE CASI PARTICOLARI

Ecco i casi particolari :
  • il prodotto di un numero per 10 per 100 per 1000 ecc si ottiene scrivendo  alla sua uno due o tre  zeri
25  x 10  = 250        25 x 100 = 2500   25 x 1000 = 25000

  • il prodotto di due o più fattori, uno o più dei quali  termini con degli zeri  si esegue facendo il prodotto dei numeri  senza tener conto degli zeri finali  e facendo poi  seguire il risultato ottenuto  da tanti zeri quanti sono quelli finali che figurano complessivamente nei fattori
40  x 16 = (4x16) x 10 = 64 x10 = 640

  • nella moltiplicazione di  un numero per 9  basta scrivere alla destra del numero uno  sero  e dal risultato ottenuto sottrarre il numero stesso 
75  x9 = 75  x (10-1) = 75 x 10 - 75 = 750 -75 = 675

  • nella moltiplicazione di  un numero per 11 basta scrivere alla destra del numero uno zero  ed aggiungere  al risultato ottenuto  il numero dato 
si ha infatti 

47  x 11 = 47 x (10 +1) = 47 x 10  + 47 =  470 + 47 = 517

il che si ottiene rapidamente scrivendo la moltiplicazione sotto forma di

47x 11 = 470 + 47 =517

lunedì 14 settembre 2015

LA PROPRIETA' DISTRIBUTIVA DELLA MOLTIPLICAZIONE

sia data da eseguire l'operazione

(7+4+3) x5

dovremo evidentemente fare prima l'addizione e moltiplicare poi il risultato ottenuto per 5 cioè

(7+4+3) x5 = 14x5= 70

ma allo stesso risultato si perviene  nel modo seguente

(7+4+3) x5 = (7x5) + (4x5) + (3x5) = 35+ 20 +15= 70

si ha cioè la seguente proprietà

per moltiplicare una somma indicata per un numero si può moltiplicare  ciascun addendo  della somma per quel numero ed addizionare poi i prodotti così ottenuti 
cioè la proprietà distributiva

allo stesso modo invece di scrivere

(13-6) x 5 = 7x5

oppure

(13-6) x5 = 13 x5 -6x5 = 65-30 = 35

per moltiplicare  una differenza indicata per un numero si può moltiplicare il minuendo  e il sottraendo  per quel numero  e fare poi la differenza fra il primo  ed il secondo dei prodotti così ottenuti

raccoglimento a fattor comune

supponiamo che la somma si a costituita da più prodotti che abbiano un fattore comune  ad esempio

(5x4) + (3x4) + (7x4) =  20+12 +24 = 60

hanno tutti il fattore comune 4

lo stesso risultato si potrà ottenere  raccogliendo  come si dice il 4 a fattor comune  eseguendo l'operazione nel seguente modo 

((5+3+7) x4 = 15 x4 = 60

LA PROPRIETA' DISSOCIATIVA DELLA MOLTIPLICAZIONE

dato un prodotto

8x45 = 360

se ad uno dei fattori per esempio  a 45 sostituiamo  i due fattori  5 e 9  di cui esso è il prodotto  avremo
8x5x9 = 360

perciò

In un prodotto di più fattori ad uno di essi si possono sostituire due o più altri purchè il loro prodotto sia uguale  al fattore considerato

la proprietà dissociativa  è utile perché facilita il calcolo mentale 
dovendosi moltiplicare i due numeri 35 x16 si opera mentalmente nel modo seguente

35x16 = 35 x2 x8 = 70 x8 = 560

LA PROPRIETA' ASSOCIATIVA DELLA MOLTIPLICAZIONE

dato un prodotto 

7x5x8 =280

osserviamo che se sostituiamo ai fattori 7 e 5  il loro prodotto 35 avremo

7x5 x8 = 35 x8 = 280

si ha perciò la seguente  proprietà

in un prodotto di tre o più fattori  ad o più di essi si può sostituire il loro prodotto  già eseguito

LA PROPRIETA' COMMUTATIVA DELLA MOLTIPLICAZIONE

il prodotto di due o piu' fattori non cambia se si muta l'ordine di essi

se ad esempio  è dato il prodotto  :

15 x 3 x4 = 45x4 = 180

4x15x3 = 60 x3 = 180

cioè il prodotto non cambia se cambiamo l'ordine dei fattori

la proprietà commutativa è utile perché ci dà la possibilità di fare la prova della moltiplicazione  infatti l'operazione eseguita è esatta se moltiplicando  i fattori  in ordine diverso dal dato si ottiene lo stesso risultato

Il prodotto di due fattori di cui uno è l'unita è uguale all'altro fattore

1x 5 = 1+1+1+1+1= 5

se invece consideriamo il prodotto 5x1  questo significherebbe la somma di 1 addendo = 5  e non avrebbe senso perché  sappiamo che in una somma gli addendi devono essere almeno due

quindi  5X1 = 5 si può scrivere solo così


il prodotto di due fattori è zero se uno dei fattori è zero

sappiamo che

0x5= 0+0+0+0+0 = 0

5x0 = 0

anche in questo caso è valida la proprietà commutativa 




LA MOLTIPLICAZIONE

prodotto di due numeri 

se si ha  una somma di due  o più numeri uguali  per esempio


9+9+9+9 = 36

si conviene di scrivere tale somma con

9x4= 36

e ciascuna di esse si dice prodotto di 9 per 4  Il numero 9 che è uno degli addendi uguali della somma considerata si dice moltiplicando e il numero 4 che indica il numero degli addendi che si addizionano si dice moltiplicatore entrambi si chiamano fattori del prodotto

si dice  prodotto di un numero  per un altro diverso da 0  o 1  la somma  di tanti addendi uguali al primo tante quante le unità del secondo

si ha  ad es

9x5 = 9+9+9+9+9    5x3= 5+5+5

L'operazione che ci consente di  trovare il prodotto di due numeri si dice moltiplicazione

il prodotto di più fattori

si dice prodotto di più fattori il numero che si ottiene  moltiplicando il primo per il secondo  il risultato ottenuto per il terzo  e così via

7x5x4 = 35 x4 = 140