Visualizzazione post con etichetta GIOCHI LOGICI E MATEMATICI. Mostra tutti i post
Visualizzazione post con etichetta GIOCHI LOGICI E MATEMATICI. Mostra tutti i post

venerdì 18 settembre 2015

FIBONACCI

Fra le numerosi questioni  matematiche  e algebriche di cui si occupò Fibonacci  quella delle successioni merita  un particolare cenno.
 Anche perché  su di esse Fibonacci costruì  un interessante problema quello dei conigli
Supponiamo, diceva Fibonacci, diceva di  chiudere in un'apposita gabbia  una coppia di conigli maschio e femmina  in modo che generino altri  conigli supponiamo ancora che i figli raggiungano la maturità sessuale per  generare all'età di due mesi   e che riproducano a loro volta una nuova coppia di conigli maschio e femmina e che anche questi generino  a loro volta  una coppia simile  alla fine di ogni mese successivo.
se nessun coniglio  muore quante coppie di conigli  ci saranno alla fine dell'anno ?

seguiamo la soluzione attraverso un grafico 

Fibonacci diceva che seguendo la coppia iniziale A  del mese di gennaio  in febbraio ci saranno due coppie  A E B  in marzo ci sarà una nuova coppia  C nata dalla A    e le due precedenti
In aprile le cose si complicano  sono trascorsi due mesi  e anche la coppia B comincia a prolificare.
Avremo allora oltre alle tre copie di marzo la D nata dalla A  e la E  nata dalla B.
In maggio  la situazione diventa ancora più complessa  perché anche la C la copia nata in marzo comincia a prolificare 
alle cinque  coppie precedenti  si aggiungono anche la F dalla A  la G nata dalla B e la H nata dalla C
Il ragionamento continua in modo analogo  per il numero di coppie nel mese di giugno  di luglio e così via fino alla fine dell'anno il numero di copie nei mesi considerati Fibonacci lo inscrive in una sequenza

 1,2,3,5,8,13 .....

non è difficile  scorgere tra questi numeri  una legge che ne regola la formazione  dal numero 3 in poi  i successivi  sono dati dalla somma dei due numeri precedenti

1, 2,    3              5                   8            13
      2+1    2+3           3+5             5+8

di questo passo è facile individuare il numero delle coppie  nei mesi successivi a giugno

in luglio              8+13  =21
in agosto            13+21 = 34
in settembre       21+34 = 55

e così via fino a dicembre

alla fine dell'anno ci saranno 233 coppie di conigli 
Evidentemente una volta scoperta la legge di composizione  la successione si può estendere all'infinito
Fibonacci non approfondì  in seguito il problema delle sequenze  di numeri si dovette giungere al XIX secolo perché i matematici  più noti approfondissero  il tema delle successioni  e dele loro proprietà formali.
Uno di qesti un certo Lucas fece studi seri e profondi sulle sequenze (conosciute come serie di Fibonacci)
che iniziano  con due numeri interi qualsiasi  e in cui  la legge di formazione prevede che ogni numero successivo sia la somma dei due precedenti
Le sere di Fibonacci hanno colpito  la fantasia dei matematici  e di appassionati che hanno cercato di scoprirvi proprietà e teoremi nascosti 
recentemente le serie di Fibonacci  hanno rivelato la loro utilità nei moderni metodi di programmazione elettronica soprattutto nella selezione dei dati  nel recupero delle informazioni  e nella generazione di numeri casuali

giovedì 17 settembre 2015

gioco con i numeri - i numeri perfetti

Chi ha dimestichezza con le proprietà dei numeri può  tentare di risolvere questo gioco.

cercare tre numeri interi e positivi la cui somma risulti uguale al loro prodotto 

una soluzione può essere questa

1X2X3=1+2+3= 6

si noti che i numeri 1,2,3, sono anche divisori di 6 che costituisce la loro somma

si continui il gioco  trovando quei numeri  dopo il 6 che goda della stessa proprietà.
Questi numeri si chiamano  "numeri perfetti"


Fra i matematici  antichi Euclide famoso soprattutto per i suoi Elementi di geometria  e vissuto ad Alessandria d' Egitto  durante il periodo della sua massima attività (306 -283 a.C.)  riuscì a elaborare la folrmula che sintetizzasse la struttura formale dei numeri perfetti

N= 2^n-1*(2)^n  -1

dove il secondo fattore cioè (2)^n  - 1 deve essere un fattore primo cioè divisibile solo per se stesso e 1. quindi bisogna dare a n un valore per cui  (2)^n  -1  è primo

giochi con i numeri - IL RISULTATO è 100

Di certo i numeri servono all'uomo prima di tutto per  risolvere problemi pratici  ma è bello anche pensare che con i numeri può anche  divertirsi.
ecco  uno dei giochi con i numeri assai popolare

si prenda l'insieme delle cifre  1,2,3,4,5,6,7,8,9.
Il gioco consiste nell'inserire  tra questi numeri  dei simboli di operazioni matematiche  in modo tale che  l'espressione si uguale a 100

qui di seguito una soluzione

1+2+3+4+5+6+7+ (8X9) = 100

chiaramente la posizione dei numeri  deve rimanere tale

noi in questa espressione ci siamo avvalsi della moltiplicazione ma potrebbe essere divertente trovare soluzioni utilizzando solamente addizioni e sottrazioni anche abbinando i numeri  ma senza variare l'ordine 

12+3-4+5+67+8+9= 100

Oppure un altro gioco potrebbe essere quello  di utilizzare i numeri  in ordine decrescente 9,8,7,6,5,4,3,2,1 cercando di utilizzare meno possibile i simboli  simboli + e -