Visualizzazione post con etichetta le rette. Mostra tutti i post
Visualizzazione post con etichetta le rette. Mostra tutti i post

lunedì 27 novembre 2017

rette parallele

rette parallele

5° postulato  detto postulato di Euclide

Data una retta r ed un punto P esterno ad essa esiste una e una sola retta passante per P e non avente un punto in comune con la r.

Il precedente postulato ci consente di dare la seguente definizione

due rette del piano si dicono parallele se coincidono oppure se non hanno nessun punto in comune.
In molte trattazione non si considerano parallele anche le rette coincidenti. La definizione più ampia riportata è suggerita dalle vedute più recenti degli studiosi di geometria.

Dal postulato di Euclide e dalla successiva definizione discende il seguente corollario

COROLLARIO

Data una retta r ed un punto P del piano (appartenente oppure no alla r)  per P si può condurre una ed una sola retta s parallela alla r.

Parlando  della parallela condotta per un punto ad una retta si dovrà dire - stante l'unicità - la parallela e non una parallela.
Si osservi che nel piano le possibili posizioni reciproche di due rette sono soltanto due :

rette incidenti (cioè aventi un solo punto in comune)
rette parallele (cioè aventi tutti i punti in comune o nessuno).

A questo punto fra i postulati ed i corollari che da essi discendono conosciamo molte proprietà delle rette. Anche se  non ci è nota la loro intrinseca natura siamo in grado di ragionare su di esse; per cui possiamo passare alla definizione di altri enti geometrici  che con le rette hanno uno stretto rapporto.

Le immagini di un granello di sabbia, di un filo steso, della superficie di un tavolo, adoperate in geometria intuitiva per introdurre i concetti di punto, retta e piano dovrebbero apparirci ormai come rappresentazioni  piuttosto grossolani. Nulla ci vieta  di ricorrere ancora ad esser per aiutare il nostro sforzo di immaginazione, ma solo al patto di considerarli modelli del tutto occasionali.

mercoledì 22 novembre 2017

geometria - uguaglianza delle rette

geometria - uguaglianza delle rette

Sappiamo che data una retta AB = r esistono  su r due possibili ordinamenti dei suoi punti : quello  per il quale A precede B e l'altro per il quale B precede A. Allorché  si fissa uno di tali ordinamenti ( ad esempio il primo)  si viene automaticamente a fissare su r un vero di percorrenza (quello da A verso B)  od a una orientazione della retta.
La retta si dice allora orientata. Il verso prescelto viene detto  verso positivo; l'altro verso negativo.

4° postulato. Date due rette orientate a e b e due loro punti A (appartenente ad a ) e B (appartenente a b)  esistono due movimenti  rigidi che portano a a coincidere con b con A su B : l'uno fa coincidere le due orientazioni e l'altro le dispone in senso opposto.

COROLLARIO. Tutte le rette sono uguali
Infatti date due rette è possibile con un movimento  portarle a coincidere.

martedì 12 settembre 2017

molteplicità delle rette

molteplicità delle rette

3° POSTULATO

Dato un punto  P esistono rette che non lo contengono

1° COROLLARIO

esistono infinite terne di punti non allineati. Infatti siano P un punto ed r una  retta non passante per esso. Presi sulla r distinti punti A e B  si ottiene la terna P,A,B di punti  che non sono allineati perché per A e B  passa solo la retta r e P non appartiene ad essa.


2° COROLLARIO

 Per ogni punto P passano infinite rette.
Basta considerare una retta r non passante per P. Congiungendo P con gli infiniti punti  r si ottengono infinite rette passanti per P

3° COROLLARIO

Esistono  infiniti punti non appartenenti alla retta r.
Infatti se A è un punto di r ed s è una retta contenente A tutti gli infiniti punti di s uno al più escluso  risultano  esterni alla r.

Un Punto A appartenente ad una retta r  si dice interno ad essa un punto P non appartenente alla retta r si dice esterno ad r.

mercoledì 6 settembre 2017

geometria - le rette come insieme ordinato

geometria - le rette come insieme ordinato

Un insieme si dice ordinato quando è stato introdotto da un criterio  di precedenza in virtù del quale  presi due suoi qualunque elementi   a e b  si può stabilire se a precede b oppure se b precede a.
Ad esempio  possiamo ordinare  l'insieme dei numeri naturali convenendo che di due di tali numeri il minore precede il maggiore.
Per l'insieme degli alunni della classe possiamo fissare un ordine utilizzando  l'elenco alfabetico dei loro nomi.
Si noti che ad ogni ordinamento  attribuito  agli elementi di un insieme  corrisponde sempre un ordinamento in senso opposto. Così  nei due esempi citati  si possono ordinare i numeri naturali dal maggiore al minore o elencare i nomi degli alunni della classe dalla lettera Z alla lettera A.

L'ordinamento dato ad un insieme gode della proprietà transitiva nel senso che se un elemento a precede un elemento b  e b precede l'elemento c allora a precede anche l'elemento c.

2° POSTULATO

Ogni retta r è un insieme ordinato di punti. L'ordinamento è tale che :

presi su r due punti distinti  A e B esiste sempre un punto di r compreso tra A e B; preso su r un punto C esistono sempre due punti A e B  di r  fra i quali esso è compreso.

1° COROLLARIO. Fra due punti  A e B di r sono compresi infiniti punti appartenenti ad r. Infatti tra A e B  deve essere compreso un  punto C di r; così  fra A e C deve essere compreso un punto D di r; fra A  e D un altro  fra a e quest'ultimo  punto deve essere compreso un altro punto e così all'infinito.

Gli insiemi  ordinati per i quali  fra due elementi qualunque è sempre compreso un altro elemento si dicono insiemi densi. La retta è un insieme ordinato e denso.

2° COROLLARIO. ogni punto C di una retta r è preceduto e seguito da infiniti punti di r.
Il ragionamento è simile al precedente. Come il punto C deve essere preceduto dal punto A e seguito dal punto B  di r così A deve essere preceduto da un punto A1 e B seguito da B1 di r; a loro volta A1 e B1 devono essere rispettivamente preceduto da A2 B2 appartenenti a r e così via all'infinito.

Ogni insieme ordinato  per il quale un suo qualunque elemento  è preceduto e  seguito da un altro elemento  si dive insieme privo di primo  e ultimo elemento. Pertanto  abbiamo che anche la retta è un insieme primo di primo e ultimo elemento.

Dai due primi corollari  segue che :

3° COROLLARIO. Ogni retta è un insieme infinito di punti.

lunedì 10 luglio 2017

geometria - le rette

geometria - le rette

Fra i sottoinsiemi  del piano (cioè le figure piane)  vi sono insiemi di punti  di tipo particolare che chiameremo rette.

Assumiamo  come primitivo il concetto di retta. Le proprietà che caratterizzano le rette  sono fissate nei postulati che seguono.
Prima di enunciare tali postulati  precisiamo che  mentre i punto si indicano con le lettere maiuscole (A B C ....)  le rette si indicano generalmente con le lettere minuscole (a b c .....)

1° postulato

Dati due punti A e B  esiste una e una sola retta che li contiene entrambi

La retta individuata dai due punti  A e B  viene anche detta contingente i punti A e B  o retta AB.
Il precedente postulato  si suole enunciare dicendo che per due punti distinti passa una ed una sola retta


 Dal precedente postulato  consegue il

corollario

Due rette distinte non possono avere più di un punto in comune (altrimenti coinciderebbero)
Due rette aventi un punto P in comune si dicono incidenti. Il punto P si chiama punto di incidenza o di intersezione o di incontro delle due rette.



Dati più punti  se accede che appartengono tutti alla stessa retta allora i punti si dicono allineati. Il precedente postulato ci garantisce che i punto sono sempre allineati