consideriamo la proporzione
12:4 = 21:7 ;
scambiando in essa i due medi o i due estremi si ha
12:21 = 4:7 oppure 7:4 = 21 : 12
queste sono due nuove proporzioni perché entrambe come si può facilmente verificare il prodotto dei medi è uguale a quello dei due estremi cioè
se in una qualsiasi proporzione si scambiano fra loro i due medi o i due estremi si ha una nuova proporzione
questa operazione prende il nome di proprietà del permutare
data una proporzione
20:5 = 12:3
se scambiamo ogni antecedente con il suo conseguente otteniamo
5:20 = 3:12
che è una nuova proporzione come risulta evidente verificando che il prodotto 20 x 3 = 60 dei due medi è uguale al prodotto 5x 12 dei due estremi cioè
se in una qualsiasi proporzione si scambia ogni antecedente con il suo conseguente si ha una nuova proporzione
Questa operazione prende i nome di proprietà dell'invertire
mercoledì 1 aprile 2015
le proporzioni matematiche
definizioni
consideriamo due rapporti uguali ed esempio
18:3= 6 e 42:7 = 6
per la proprietà transitiva dell'uguaglianza si ha :
18:3 =42:7
Un'uguaglianza di due rapporti che si legge 18 sta a 3 come 42 sta a 7 prende il nome di proporzione
cioè
una proporzione è l'uguaglianza di due rapporto
i numeri, 3, 18 ,42, 7 si dicono termini della proporzione il primo e il quarto sono gli estremi ed il secondo e il terzo sono medi. Inoltre il primo e il terzo cioè il 18 e il 42 si dicono antecedenti ed il secondo e il quarto conseguenti
18:6 = 12 :4 oppure 18/6 =12/4 (1)
e riduciamo le due frazioni dell'ultima uguaglianza allo stesso denominatore assumendo come tale il prodotto 6x4 dei loro denominatori si avrà
18x4/6x4 = 12x6//4x6 18x4/24 =12x6/24
poiché le due frazioni uguali aventi uguali denominatori hanno anche i numeratori uguali dall'ultima uguaglianza si trae:
18x4=12x6 (2)
osservate iche il primo membro della (2) è il prodotto degli estremi della data proporzione (1) n e che il secondo membro è il prodotto degli estremi si ha dunque una proprietà fondamentale:
In ogni proporzione il prodotto dei medi è uguale al prodotti degli estremi
Viceversa
Quattro numeri in un certo ordine formano una proporzione se il prodotto del primo e del quarto è uguale al prodotto del secondo per il terzo
dati per esempio 4 numeri
9; 3; 15; 5
poiché si ha che 9x5=45 e 3x15 =45
risulta che 9x5=15x5
infatti il rapporto 9:3= 3 è uguale al rapporto 15:5 = 3
Ne consegue che dati quattro numeri per assicurarsi se nell'ordine assegnato formano una proporzione occorre verificare se il rapporto del primo al secondo è uguale al rapporto del terzo al quarto o se il prodotto del primo e del quarto è uguale al prodotto del secondo per il terzo
consideriamo due rapporti uguali ed esempio
18:3= 6 e 42:7 = 6
per la proprietà transitiva dell'uguaglianza si ha :
18:3 =42:7
Un'uguaglianza di due rapporti che si legge 18 sta a 3 come 42 sta a 7 prende il nome di proporzione
cioè
una proporzione è l'uguaglianza di due rapporto
i numeri, 3, 18 ,42, 7 si dicono termini della proporzione il primo e il quarto sono gli estremi ed il secondo e il terzo sono medi. Inoltre il primo e il terzo cioè il 18 e il 42 si dicono antecedenti ed il secondo e il quarto conseguenti
proprietà delle proporzioni
Dati due qualsiasi rapporti uguali 18/6 = 3 e 12/4 = 3 consideriamo la proporzione18:6 = 12 :4 oppure 18/6 =12/4 (1)
e riduciamo le due frazioni dell'ultima uguaglianza allo stesso denominatore assumendo come tale il prodotto 6x4 dei loro denominatori si avrà
18x4/6x4 = 12x6//4x6 18x4/24 =12x6/24
poiché le due frazioni uguali aventi uguali denominatori hanno anche i numeratori uguali dall'ultima uguaglianza si trae:
18x4=12x6 (2)
osservate iche il primo membro della (2) è il prodotto degli estremi della data proporzione (1) n e che il secondo membro è il prodotto degli estremi si ha dunque una proprietà fondamentale:
In ogni proporzione il prodotto dei medi è uguale al prodotti degli estremi
Viceversa
Quattro numeri in un certo ordine formano una proporzione se il prodotto del primo e del quarto è uguale al prodotto del secondo per il terzo
dati per esempio 4 numeri
9; 3; 15; 5
poiché si ha che 9x5=45 e 3x15 =45
risulta che 9x5=15x5
infatti il rapporto 9:3= 3 è uguale al rapporto 15:5 = 3
Ne consegue che dati quattro numeri per assicurarsi se nell'ordine assegnato formano una proporzione occorre verificare se il rapporto del primo al secondo è uguale al rapporto del terzo al quarto o se il prodotto del primo e del quarto è uguale al prodotto del secondo per il terzo
martedì 14 ottobre 2014
INSIEMI EQUIPOTENTI
DUE INSIEMI FRA SI POSSA STABILIRE UNA CORRISPONDENZA BIUNIVOCA SI DICONO EQUIPOTENTI
HANNO CIOE' LO STESSO NUMERO DI ELEMENTI
HANNO CIOE' LO STESSO NUMERO DI ELEMENTI
INSIEMI DISGIUNTI
GLI INSIEMI SI DICONO DISGIUNTI SE NON HANNO NESSUN ELEMENTO IN COMUNE
PER ESEMPIO L'INSIEME A DEI MAMMIFERI E L'INSIEME B DEI RETTILI NON HANNO NESSUN ELEMENTO IN COMUNE
PER ESEMPIO L'INSIEME A DEI MAMMIFERI E L'INSIEME B DEI RETTILI NON HANNO NESSUN ELEMENTO IN COMUNE
Iscriviti a:
Post (Atom)