i semipiani
6° POSTULATO
Ogni retta r suddivide il piano p in tre sottoinsiemi disgiunti r, p', p". I sottoinsiemi p' e p" sono tali che un segmento AB i cui estremi appartengono entrambi a p' o entrambi a p" non ha alcun punto in comune con r mentre un segmento CD i cui estremi appartengono l'uno a p' e l'altro a p" ha un punto in comune con r.
Dicesi semipiano di origine r ciascun dei due insiemi di punto P' = p' appartiene a r e p" = p" appartiene a r.
I due semipiani distinti di comune origine come p' e p" si dicono opposti.
Un punto A appartenente a un semipiano ma non all'origine di questo si dice interno al semipiano.
Un semipiano resta individuato quando se ne conosce l'origine r ed in un suo punto interno A. Per questo esso viene anche indicato come semipiano rA
COROLLARIO tutti i semipiani sono uguali
giovedì 28 dicembre 2017
mercoledì 29 novembre 2017
geometria - somma e differenza di segmenti
geometria - somma e differenza di segmenti
Dati due segmenti a e b riportiamoli su una semiretta s a partire dalla sua origine O nelle posizioni OM e MN in modo che risultino adiacenti. Il segmento ON così ottenuto si dice somma dei segmenti a e b e si scrive ON = a+b.
La somma di tre o più segmenti si ottiene addizionando a+b dei primi due il terzo segmento c poi via via tutti gli altri.
Addizionando n segmenti tutti uguali ad un segmento a il segmento somma si dice multiplo di a secondo il numero. A sua volta a si dice sottomultiplo del segmento somma secondo il numero n.
Dati due segmenti a e b co a > b si chiama loro differenza e si indica con a-b il segmento che addizionato a b dà come somma a.
L'addizione e la sottrazione dei segmenti godono di tutte le proprietà che caratterizzano l'addizione e la sottrazione di numeri positivi
Dati due segmenti a e b riportiamoli su una semiretta s a partire dalla sua origine O nelle posizioni OM e MN in modo che risultino adiacenti. Il segmento ON così ottenuto si dice somma dei segmenti a e b e si scrive ON = a+b.
La somma di tre o più segmenti si ottiene addizionando a+b dei primi due il terzo segmento c poi via via tutti gli altri.
Addizionando n segmenti tutti uguali ad un segmento a il segmento somma si dice multiplo di a secondo il numero. A sua volta a si dice sottomultiplo del segmento somma secondo il numero n.
Dati due segmenti a e b co a > b si chiama loro differenza e si indica con a-b il segmento che addizionato a b dà come somma a.
L'addizione e la sottrazione dei segmenti godono di tutte le proprietà che caratterizzano l'addizione e la sottrazione di numeri positivi
geometria - segmenti consecutivi e adiacenti
geometria - segmenti consecutivi e adiacenti
due segmenti consecutivi come AB e BC che hanno in comune un estremo ed esso soltanto si dicono consecutivi.
Due segmenti consecutivi che appartengono alla medesima retta si dicono adiacenti
Più segmenti ad due a due consecutivi e non adiacenti costituiscono nel loro insieme una poligonale.
I segmenti si dicono lati e i punti di adiacenza si dicono estremi Se gli estremi sono distinti la poligonale è aperta altrimenti è chiusa. Quando due lati non consecutivi hanno un punto in comune la poligonale è intrecciata
due segmenti consecutivi come AB e BC che hanno in comune un estremo ed esso soltanto si dicono consecutivi.
Due segmenti consecutivi che appartengono alla medesima retta si dicono adiacenti
Più segmenti ad due a due consecutivi e non adiacenti costituiscono nel loro insieme una poligonale.
I segmenti si dicono lati e i punti di adiacenza si dicono estremi Se gli estremi sono distinti la poligonale è aperta altrimenti è chiusa. Quando due lati non consecutivi hanno un punto in comune la poligonale è intrecciata
lunedì 27 novembre 2017
geometria - segmenti
geometria - segmenti
Dati due distinti punti A e B di una retta r dicesi segmento AB il sottoinsieme di r costituito da A da B e dai punti compresi tra A e B. I punti A e B si dicono estremi del segmento AB; ogni altro suo punto P si dice interno ad AB. I punti che non appartengono al segmento si dicono esterni ad esso. Talvolta un segmento indica con una lettera minuscola.
Anche il segmento è un insieme ordinato e denso dotato di un primo e ultimo elemento.
CONFRONTO DI SEGMENTI
Dati due segmenti AB e Mn di trasporti con un movimento rigido AB sulla semiretta di origine M che passa per N con A su M detta C la nuova posizione assunta dall'estremo B tre situazioni si possono verificare :
1) che C sia interno ad MN ( e allora diremo che AB è minore di MN)
2) che C coincida con N (nel caso risulta che AB è = a MN)
3) che C sia esterno ad MN ( diremo che AB è maggiore di MN)
Dati due distinti punti A e B di una retta r dicesi segmento AB il sottoinsieme di r costituito da A da B e dai punti compresi tra A e B. I punti A e B si dicono estremi del segmento AB; ogni altro suo punto P si dice interno ad AB. I punti che non appartengono al segmento si dicono esterni ad esso. Talvolta un segmento indica con una lettera minuscola.
Anche il segmento è un insieme ordinato e denso dotato di un primo e ultimo elemento.
CONFRONTO DI SEGMENTI
Dati due segmenti AB e Mn di trasporti con un movimento rigido AB sulla semiretta di origine M che passa per N con A su M detta C la nuova posizione assunta dall'estremo B tre situazioni si possono verificare :
1) che C sia interno ad MN ( e allora diremo che AB è minore di MN)
2) che C coincida con N (nel caso risulta che AB è = a MN)
3) che C sia esterno ad MN ( diremo che AB è maggiore di MN)
le semirette
le semirette
Sia r una retta orientata cioè una retta sulla quale è stato fissato un verso di percorrenza. Preso su r un punto O veniamo a individuare due sottoinsiemi della retta : quello s' cui appartengono O ed i punti che lo seguono e l'alto s" formato da O e dai punti che lo precedono. Ciascuno di tali insiemi viene detto semiretta di origine O.
Le semirette s' ed s" si dicono opposte e l'una è il proseguimento dell'altra.
E' chiaro che l'unione delle due semirette opposte s' ed s'' è la retta r mentre la loro intersezione è la figura composta dalla sola origine O.
Una semiretta s' resta individuata quando se ne conosca l'origine O ed il suo punto P. Per questo essa viene detta semiretta OP.
Anche la semiretta è un insieme ordinato (perché è fissato fra i suoi punti un criterio di precedente) e denso (perché tra i suo punti ne sono compresi infiniti altri). Essa però non è un insieme privo di primo e ultimo elemento dato che la sua origine precede (o segue) tutti gli altri suoi punti.
Dal 4° postulato segue con facili considerazioni che per semplicità non riportiamo che tutte le semirette sono uguali.
Sia r una retta orientata cioè una retta sulla quale è stato fissato un verso di percorrenza. Preso su r un punto O veniamo a individuare due sottoinsiemi della retta : quello s' cui appartengono O ed i punti che lo seguono e l'alto s" formato da O e dai punti che lo precedono. Ciascuno di tali insiemi viene detto semiretta di origine O.
Le semirette s' ed s" si dicono opposte e l'una è il proseguimento dell'altra.
E' chiaro che l'unione delle due semirette opposte s' ed s'' è la retta r mentre la loro intersezione è la figura composta dalla sola origine O.
Una semiretta s' resta individuata quando se ne conosca l'origine O ed il suo punto P. Per questo essa viene detta semiretta OP.
Anche la semiretta è un insieme ordinato (perché è fissato fra i suoi punti un criterio di precedente) e denso (perché tra i suo punti ne sono compresi infiniti altri). Essa però non è un insieme privo di primo e ultimo elemento dato che la sua origine precede (o segue) tutti gli altri suoi punti.
Dal 4° postulato segue con facili considerazioni che per semplicità non riportiamo che tutte le semirette sono uguali.
rette parallele
rette parallele
5° postulato detto postulato di Euclide
Data una retta r ed un punto P esterno ad essa esiste una e una sola retta passante per P e non avente un punto in comune con la r.
Il precedente postulato ci consente di dare la seguente definizione
due rette del piano si dicono parallele se coincidono oppure se non hanno nessun punto in comune.
In molte trattazione non si considerano parallele anche le rette coincidenti. La definizione più ampia riportata è suggerita dalle vedute più recenti degli studiosi di geometria.
Dal postulato di Euclide e dalla successiva definizione discende il seguente corollario
COROLLARIO
Data una retta r ed un punto P del piano (appartenente oppure no alla r) per P si può condurre una ed una sola retta s parallela alla r.
Parlando della parallela condotta per un punto ad una retta si dovrà dire - stante l'unicità - la parallela e non una parallela.
Si osservi che nel piano le possibili posizioni reciproche di due rette sono soltanto due :
rette incidenti (cioè aventi un solo punto in comune)
rette parallele (cioè aventi tutti i punti in comune o nessuno).
A questo punto fra i postulati ed i corollari che da essi discendono conosciamo molte proprietà delle rette. Anche se non ci è nota la loro intrinseca natura siamo in grado di ragionare su di esse; per cui possiamo passare alla definizione di altri enti geometrici che con le rette hanno uno stretto rapporto.
Le immagini di un granello di sabbia, di un filo steso, della superficie di un tavolo, adoperate in geometria intuitiva per introdurre i concetti di punto, retta e piano dovrebbero apparirci ormai come rappresentazioni piuttosto grossolani. Nulla ci vieta di ricorrere ancora ad esser per aiutare il nostro sforzo di immaginazione, ma solo al patto di considerarli modelli del tutto occasionali.
5° postulato detto postulato di Euclide
Data una retta r ed un punto P esterno ad essa esiste una e una sola retta passante per P e non avente un punto in comune con la r.
Il precedente postulato ci consente di dare la seguente definizione
due rette del piano si dicono parallele se coincidono oppure se non hanno nessun punto in comune.
In molte trattazione non si considerano parallele anche le rette coincidenti. La definizione più ampia riportata è suggerita dalle vedute più recenti degli studiosi di geometria.
Dal postulato di Euclide e dalla successiva definizione discende il seguente corollario
COROLLARIO
Data una retta r ed un punto P del piano (appartenente oppure no alla r) per P si può condurre una ed una sola retta s parallela alla r.
Parlando della parallela condotta per un punto ad una retta si dovrà dire - stante l'unicità - la parallela e non una parallela.
Si osservi che nel piano le possibili posizioni reciproche di due rette sono soltanto due :
rette incidenti (cioè aventi un solo punto in comune)
rette parallele (cioè aventi tutti i punti in comune o nessuno).
A questo punto fra i postulati ed i corollari che da essi discendono conosciamo molte proprietà delle rette. Anche se non ci è nota la loro intrinseca natura siamo in grado di ragionare su di esse; per cui possiamo passare alla definizione di altri enti geometrici che con le rette hanno uno stretto rapporto.
Le immagini di un granello di sabbia, di un filo steso, della superficie di un tavolo, adoperate in geometria intuitiva per introdurre i concetti di punto, retta e piano dovrebbero apparirci ormai come rappresentazioni piuttosto grossolani. Nulla ci vieta di ricorrere ancora ad esser per aiutare il nostro sforzo di immaginazione, ma solo al patto di considerarli modelli del tutto occasionali.
mercoledì 22 novembre 2017
geometria - uguaglianza delle rette
geometria - uguaglianza delle rette
Sappiamo che data una retta AB = r esistono su r due possibili ordinamenti dei suoi punti : quello per il quale A precede B e l'altro per il quale B precede A. Allorché si fissa uno di tali ordinamenti ( ad esempio il primo) si viene automaticamente a fissare su r un vero di percorrenza (quello da A verso B) od a una orientazione della retta.
La retta si dice allora orientata. Il verso prescelto viene detto verso positivo; l'altro verso negativo.
4° postulato. Date due rette orientate a e b e due loro punti A (appartenente ad a ) e B (appartenente a b) esistono due movimenti rigidi che portano a a coincidere con b con A su B : l'uno fa coincidere le due orientazioni e l'altro le dispone in senso opposto.
COROLLARIO. Tutte le rette sono uguali
Infatti date due rette è possibile con un movimento portarle a coincidere.
Sappiamo che data una retta AB = r esistono su r due possibili ordinamenti dei suoi punti : quello per il quale A precede B e l'altro per il quale B precede A. Allorché si fissa uno di tali ordinamenti ( ad esempio il primo) si viene automaticamente a fissare su r un vero di percorrenza (quello da A verso B) od a una orientazione della retta.
La retta si dice allora orientata. Il verso prescelto viene detto verso positivo; l'altro verso negativo.
4° postulato. Date due rette orientate a e b e due loro punti A (appartenente ad a ) e B (appartenente a b) esistono due movimenti rigidi che portano a a coincidere con b con A su B : l'uno fa coincidere le due orientazioni e l'altro le dispone in senso opposto.
COROLLARIO. Tutte le rette sono uguali
Infatti date due rette è possibile con un movimento portarle a coincidere.
martedì 12 settembre 2017
molteplicità delle rette
molteplicità delle rette
3° POSTULATO
Dato un punto P esistono rette che non lo contengono
1° COROLLARIO
esistono infinite terne di punti non allineati. Infatti siano P un punto ed r una retta non passante per esso. Presi sulla r distinti punti A e B si ottiene la terna P,A,B di punti che non sono allineati perché per A e B passa solo la retta r e P non appartiene ad essa.
2° COROLLARIO
Per ogni punto P passano infinite rette.
Basta considerare una retta r non passante per P. Congiungendo P con gli infiniti punti r si ottengono infinite rette passanti per P
3° COROLLARIO
Esistono infiniti punti non appartenenti alla retta r.
Infatti se A è un punto di r ed s è una retta contenente A tutti gli infiniti punti di s uno al più escluso risultano esterni alla r.
Un Punto A appartenente ad una retta r si dice interno ad essa un punto P non appartenente alla retta r si dice esterno ad r.
3° POSTULATO
Dato un punto P esistono rette che non lo contengono
1° COROLLARIO
esistono infinite terne di punti non allineati. Infatti siano P un punto ed r una retta non passante per esso. Presi sulla r distinti punti A e B si ottiene la terna P,A,B di punti che non sono allineati perché per A e B passa solo la retta r e P non appartiene ad essa.
2° COROLLARIO
Per ogni punto P passano infinite rette.
Basta considerare una retta r non passante per P. Congiungendo P con gli infiniti punti r si ottengono infinite rette passanti per P
3° COROLLARIO
Esistono infiniti punti non appartenenti alla retta r.
Infatti se A è un punto di r ed s è una retta contenente A tutti gli infiniti punti di s uno al più escluso risultano esterni alla r.
Un Punto A appartenente ad una retta r si dice interno ad essa un punto P non appartenente alla retta r si dice esterno ad r.
mercoledì 6 settembre 2017
geometria - le rette come insieme ordinato
geometria - le rette come insieme ordinato
Un insieme si dice ordinato quando è stato introdotto da un criterio di precedenza in virtù del quale presi due suoi qualunque elementi a e b si può stabilire se a precede b oppure se b precede a.
Ad esempio possiamo ordinare l'insieme dei numeri naturali convenendo che di due di tali numeri il minore precede il maggiore.
Per l'insieme degli alunni della classe possiamo fissare un ordine utilizzando l'elenco alfabetico dei loro nomi.
Si noti che ad ogni ordinamento attribuito agli elementi di un insieme corrisponde sempre un ordinamento in senso opposto. Così nei due esempi citati si possono ordinare i numeri naturali dal maggiore al minore o elencare i nomi degli alunni della classe dalla lettera Z alla lettera A.
L'ordinamento dato ad un insieme gode della proprietà transitiva nel senso che se un elemento a precede un elemento b e b precede l'elemento c allora a precede anche l'elemento c.
2° POSTULATO
Ogni retta r è un insieme ordinato di punti. L'ordinamento è tale che :
presi su r due punti distinti A e B esiste sempre un punto di r compreso tra A e B; preso su r un punto C esistono sempre due punti A e B di r fra i quali esso è compreso.
1° COROLLARIO. Fra due punti A e B di r sono compresi infiniti punti appartenenti ad r. Infatti tra A e B deve essere compreso un punto C di r; così fra A e C deve essere compreso un punto D di r; fra A e D un altro fra a e quest'ultimo punto deve essere compreso un altro punto e così all'infinito.
Gli insiemi ordinati per i quali fra due elementi qualunque è sempre compreso un altro elemento si dicono insiemi densi. La retta è un insieme ordinato e denso.
2° COROLLARIO. ogni punto C di una retta r è preceduto e seguito da infiniti punti di r.
Il ragionamento è simile al precedente. Come il punto C deve essere preceduto dal punto A e seguito dal punto B di r così A deve essere preceduto da un punto A1 e B seguito da B1 di r; a loro volta A1 e B1 devono essere rispettivamente preceduto da A2 B2 appartenenti a r e così via all'infinito.
Ogni insieme ordinato per il quale un suo qualunque elemento è preceduto e seguito da un altro elemento si dive insieme privo di primo e ultimo elemento. Pertanto abbiamo che anche la retta è un insieme primo di primo e ultimo elemento.
Dai due primi corollari segue che :
3° COROLLARIO. Ogni retta è un insieme infinito di punti.
Un insieme si dice ordinato quando è stato introdotto da un criterio di precedenza in virtù del quale presi due suoi qualunque elementi a e b si può stabilire se a precede b oppure se b precede a.
Ad esempio possiamo ordinare l'insieme dei numeri naturali convenendo che di due di tali numeri il minore precede il maggiore.
Per l'insieme degli alunni della classe possiamo fissare un ordine utilizzando l'elenco alfabetico dei loro nomi.
Si noti che ad ogni ordinamento attribuito agli elementi di un insieme corrisponde sempre un ordinamento in senso opposto. Così nei due esempi citati si possono ordinare i numeri naturali dal maggiore al minore o elencare i nomi degli alunni della classe dalla lettera Z alla lettera A.
L'ordinamento dato ad un insieme gode della proprietà transitiva nel senso che se un elemento a precede un elemento b e b precede l'elemento c allora a precede anche l'elemento c.
2° POSTULATO
Ogni retta r è un insieme ordinato di punti. L'ordinamento è tale che :
presi su r due punti distinti A e B esiste sempre un punto di r compreso tra A e B; preso su r un punto C esistono sempre due punti A e B di r fra i quali esso è compreso.
1° COROLLARIO. Fra due punti A e B di r sono compresi infiniti punti appartenenti ad r. Infatti tra A e B deve essere compreso un punto C di r; così fra A e C deve essere compreso un punto D di r; fra A e D un altro fra a e quest'ultimo punto deve essere compreso un altro punto e così all'infinito.
Gli insiemi ordinati per i quali fra due elementi qualunque è sempre compreso un altro elemento si dicono insiemi densi. La retta è un insieme ordinato e denso.
2° COROLLARIO. ogni punto C di una retta r è preceduto e seguito da infiniti punti di r.
Il ragionamento è simile al precedente. Come il punto C deve essere preceduto dal punto A e seguito dal punto B di r così A deve essere preceduto da un punto A1 e B seguito da B1 di r; a loro volta A1 e B1 devono essere rispettivamente preceduto da A2 B2 appartenenti a r e così via all'infinito.
Ogni insieme ordinato per il quale un suo qualunque elemento è preceduto e seguito da un altro elemento si dive insieme privo di primo e ultimo elemento. Pertanto abbiamo che anche la retta è un insieme primo di primo e ultimo elemento.
Dai due primi corollari segue che :
3° COROLLARIO. Ogni retta è un insieme infinito di punti.
lunedì 10 luglio 2017
geometria - le rette
geometria - le rette
Fra i sottoinsiemi del piano (cioè le figure piane) vi sono insiemi di punti di tipo particolare che chiameremo rette.
Assumiamo come primitivo il concetto di retta. Le proprietà che caratterizzano le rette sono fissate nei postulati che seguono.
Prima di enunciare tali postulati precisiamo che mentre i punto si indicano con le lettere maiuscole (A B C ....) le rette si indicano generalmente con le lettere minuscole (a b c .....)
La retta individuata dai due punti A e B viene anche detta contingente i punti A e B o retta AB.
Il precedente postulato si suole enunciare dicendo che per due punti distinti passa una ed una sola retta
Dal precedente postulato consegue il
Due rette aventi un punto P in comune si dicono incidenti. Il punto P si chiama punto di incidenza o di intersezione o di incontro delle due rette.
Dati più punti se accede che appartengono tutti alla stessa retta allora i punti si dicono allineati. Il precedente postulato ci garantisce che i punto sono sempre allineati
Fra i sottoinsiemi del piano (cioè le figure piane) vi sono insiemi di punti di tipo particolare che chiameremo rette.
Assumiamo come primitivo il concetto di retta. Le proprietà che caratterizzano le rette sono fissate nei postulati che seguono.
Prima di enunciare tali postulati precisiamo che mentre i punto si indicano con le lettere maiuscole (A B C ....) le rette si indicano generalmente con le lettere minuscole (a b c .....)
1° postulato
Dati due punti A e B esiste una e una sola retta che li contiene entrambiLa retta individuata dai due punti A e B viene anche detta contingente i punti A e B o retta AB.
Il precedente postulato si suole enunciare dicendo che per due punti distinti passa una ed una sola retta
Dal precedente postulato consegue il
corollario
Due rette distinte non possono avere più di un punto in comune (altrimenti coinciderebbero)Due rette aventi un punto P in comune si dicono incidenti. Il punto P si chiama punto di incidenza o di intersezione o di incontro delle due rette.
Dati più punti se accede che appartengono tutti alla stessa retta allora i punti si dicono allineati. Il precedente postulato ci garantisce che i punto sono sempre allineati
martedì 20 giugno 2017
geometria le figure uguali - il movimento
Le figure uguali - il movimento
I ragionamento di figure uguali è complesso se lo si vuole trattare da un punto di vista razionale.
Nel momento in cui si parla di movimento dei corpi bisogna precisare la differenza tra i corpi rigidi e quelli deformabili. Si tratta di movimenti effettuati con corpi rigidi nel piano e nello spazio (movimenti rigidi). Anche le figure geometriche vanno pensati come corpi rigidi che possono essere assoggettate a movimenti che le trasferiscono da una zona ad un'altra del piano e dello spazio.
L'idea di movimento (rigido) di una figura geometria viene introdotta come concetto primitivo.
Diremo uguali due figure quando con un movimento è possibile portare una di esse a coincidere punto per punto con l'altra
Ciò significa che a movimento compiuto ogni punto A della prima figura F si identifica con un punto A' della seconda figura F' e che ogni punto B' della F' coincide con un punto B della F. I punti A;B....... della figura F si dicono corrispondenti od omologhi rispettivamente dei punti A';B' della figura F'.
POSTULATO. l'uguaglianza delle figure gode delle tre seguenti proprietà :
Ogni figura è uguale a se stessa (proprietà riflessiva dell'uguaglianza);
Se una prima figura è uguale ad una seconda, anche la seconda è uguale alla prima (proprietà simmetrica dell'uguaglianza);
Se una prima figura è uguale ad una seconda e questa è uguale ad una terza allora la prima è uguale alla terza (proprietà transitiva dell'uguaglianza).
Nella geometria piana i possibili movimenti dovrebbero essere soltanto quelli che consentono di spostare una figura facendola strisciare sul piano cui essa appartiene cioè quelli che fanno muovere il piano su se stesso.
Tuttavia introduce un'eccezione il ribaltamento del piano cioè quel movimento che si adopera ogni volta che si volta la pagina di un libro.
I ragionamento di figure uguali è complesso se lo si vuole trattare da un punto di vista razionale.
Nel momento in cui si parla di movimento dei corpi bisogna precisare la differenza tra i corpi rigidi e quelli deformabili. Si tratta di movimenti effettuati con corpi rigidi nel piano e nello spazio (movimenti rigidi). Anche le figure geometriche vanno pensati come corpi rigidi che possono essere assoggettate a movimenti che le trasferiscono da una zona ad un'altra del piano e dello spazio.
L'idea di movimento (rigido) di una figura geometria viene introdotta come concetto primitivo.
Diremo uguali due figure quando con un movimento è possibile portare una di esse a coincidere punto per punto con l'altra
Ciò significa che a movimento compiuto ogni punto A della prima figura F si identifica con un punto A' della seconda figura F' e che ogni punto B' della F' coincide con un punto B della F. I punti A;B....... della figura F si dicono corrispondenti od omologhi rispettivamente dei punti A';B' della figura F'.
POSTULATO. l'uguaglianza delle figure gode delle tre seguenti proprietà :
Ogni figura è uguale a se stessa (proprietà riflessiva dell'uguaglianza);
Se una prima figura è uguale ad una seconda, anche la seconda è uguale alla prima (proprietà simmetrica dell'uguaglianza);
Se una prima figura è uguale ad una seconda e questa è uguale ad una terza allora la prima è uguale alla terza (proprietà transitiva dell'uguaglianza).
Nella geometria piana i possibili movimenti dovrebbero essere soltanto quelli che consentono di spostare una figura facendola strisciare sul piano cui essa appartiene cioè quelli che fanno muovere il piano su se stesso.
Tuttavia introduce un'eccezione il ribaltamento del piano cioè quel movimento che si adopera ogni volta che si volta la pagina di un libro.
mercoledì 7 giugno 2017
formule - addizione e sottrazione letterale
formule - addizione e sottrazione letterale
(+ a) + (+b) = a + b
(+ a) + (- b) = a - b = - (b - a)
(- a) + (- b) = - (a + b)
(+ a) - (- b) = a + b
(- a) - (- b) = - a + b = - (a - b)
a + b = a + b
m m m m
(+ a) + (+b) = a + b
(+ a) + (- b) = a - b = - (b - a)
(- a) + (- b) = - (a + b)
(+ a) - (- b) = a + b
(- a) - (- b) = - a + b = - (a - b)
a + b = a + b
m m m m
geometria - gli insiemi
geometria - gli insiemi
Nella matematica si usa il vocabolo insieme per indicare un qualunque raggruppamento di enti comunque scelti. Ad esempio si parla dell'insieme dei numeri naturali, dell'insieme dei triangoli , dell'insieme dei punti di un cerchio, dell'insieme dei vertici di un poligono.
Gli enti che, nel loro complesso formano un insieme si dicono elementi di quell'insieme.
Un insieme si dice finito se l'elenco dei suoi insiemi ha un termine, infinito in caso contrario. Ad esempio è finito l'insieme dei vertici di un poligono mentre è infinito l'insieme dei triangoli.
Un insieme finito può venire indicato racchiudendo tra i due segni di parentesi graffa gli elementi che lo contengono
A = {1,3,5}
Noi intendiamo significare che un insieme A ha per elementi i primi tre numeri naturali dispari.
Fra gli insiemi si considera anche quello privo di elementi o insieme vuoto che viene indicato con il simbolo
Ø Ad esempio è vuoto un insieme di triangoli aventi due angoli retto oppure l'insieme dei punti comuni a due circonferenze concentriche di raggio diverso.
Se consideriamo l'insieme T dei triangoli e l'insieme P dei poligoni ci accorgiamo che si verifica una situazione particolare: poiché ogni triangolo è pure un poligono si ha che ogni elemento di T è anche elemento di P. Si dice che T è sottoinsieme di P ovvero T è incluso in P.
In generale un insieme A è sottoinsieme di un altro insieme B se ogni elemento di A è pure elemento di B. Ad esempio l'insieme
{2,4} è incluso nell'insieme {2,4,6,8}l'insieme delle lettere della parola RAMO è sottoinsieme delle lettere della parola AMORE.
Nella matematica si usa il vocabolo insieme per indicare un qualunque raggruppamento di enti comunque scelti. Ad esempio si parla dell'insieme dei numeri naturali, dell'insieme dei triangoli , dell'insieme dei punti di un cerchio, dell'insieme dei vertici di un poligono.
Gli enti che, nel loro complesso formano un insieme si dicono elementi di quell'insieme.
Un insieme si dice finito se l'elenco dei suoi insiemi ha un termine, infinito in caso contrario. Ad esempio è finito l'insieme dei vertici di un poligono mentre è infinito l'insieme dei triangoli.
Un insieme finito può venire indicato racchiudendo tra i due segni di parentesi graffa gli elementi che lo contengono
A = {1,3,5}
Noi intendiamo significare che un insieme A ha per elementi i primi tre numeri naturali dispari.
Fra gli insiemi si considera anche quello privo di elementi o insieme vuoto che viene indicato con il simbolo
Ø Ad esempio è vuoto un insieme di triangoli aventi due angoli retto oppure l'insieme dei punti comuni a due circonferenze concentriche di raggio diverso.
Se consideriamo l'insieme T dei triangoli e l'insieme P dei poligoni ci accorgiamo che si verifica una situazione particolare: poiché ogni triangolo è pure un poligono si ha che ogni elemento di T è anche elemento di P. Si dice che T è sottoinsieme di P ovvero T è incluso in P.
In generale un insieme A è sottoinsieme di un altro insieme B se ogni elemento di A è pure elemento di B. Ad esempio l'insieme
{2,4} è incluso nell'insieme {2,4,6,8}l'insieme delle lettere della parola RAMO è sottoinsieme delle lettere della parola AMORE.
martedì 6 giugno 2017
geometria - postulati o assiomi
geometria - postulati o assiomi
Abbiamo visto che per definire un ente geometrico occorre far riferimento ad altri enti precedentemente introdotti che, a loro volta. possono essere definiti solo facendo ricorso ad altri fi modo che di concetto in concetto si deve necessariamente risalire a concetti primitivi.
In modo del tutto analogo, per dimostrare una data proprietà ci si deve riferire ad altre proprietà precedentemente dimostrate che a loro volta dipendono da altre.
Si viene così a costruire con un procedimento a ritroso una successione di proprietà che non può chiaramente estendersi all'infinito Per cui è necessario che alcune proprietà iniziali vengano introdotte senza darne una dimostrazione.
tali proprietà primitive vengono chiamati postulati o assiomi.
I postulati esprimono le prime proprietà dei rami della geometria e generalmente forniscono notizie riguardanti gli enti primitivi. Ad esempio noi dopo aver introdotto la retta come concetto primitivo ammetteremo che dati due punti A e B esiste una e una sola retta che li contiene entrambi .
Tale proposizione è chiaramente indimostrabile dato che non solo non conosciamo alcun'altra proprietà delle rette alla quale appoggiare un qualunque ragionamento in merito ma addirittura ignoriamo per mancanza di definizione cosa siano effettivamente i punti e le rette.
Si osservi a tal proposito che il discorso geometrico ha grossolanamente un inizio del tipo seguente : noi intendiamo trattare di certi enti xyz di cui non diamo nessuna definizione ma dei quali precisiamo che godono delle proprietà abc . E' ovvio che non ha alcun senso il cercare di dimostrare tale proprietà (postulati). e ciò non solo per l'insistenza di proprietà precedenti cui appoggiare il ragionamento ma soprattutto perché i postulati esprimono certe caratteristiche soggettivamente attribuite ad enti di natura imprecisata.
Per esempio se dicessimo :"noi vogliamo ragionare su certi oggetti che supponiamo siano solidi di color rosso elettrizzati positivamente ecc.2 che significato avrebbe dimostrare che il colore di questi oggetti è rosso perché la scelta del colore è casuale.
Da quanto esposto dovrebbe risultare chiaro che i postulati fornendo una serie di precisazioni circa gli enti primitivi li delimitano e li caratterizzano togliendo loro buona parte di quella arbitrarietà che sembrava assoluta allorché essi erano stati introdotti. Si può asserire che i postulati danno una definizione implicita degli enti primitivi
Abbiamo visto che per definire un ente geometrico occorre far riferimento ad altri enti precedentemente introdotti che, a loro volta. possono essere definiti solo facendo ricorso ad altri fi modo che di concetto in concetto si deve necessariamente risalire a concetti primitivi.
In modo del tutto analogo, per dimostrare una data proprietà ci si deve riferire ad altre proprietà precedentemente dimostrate che a loro volta dipendono da altre.
Si viene così a costruire con un procedimento a ritroso una successione di proprietà che non può chiaramente estendersi all'infinito Per cui è necessario che alcune proprietà iniziali vengano introdotte senza darne una dimostrazione.
tali proprietà primitive vengono chiamati postulati o assiomi.
I postulati esprimono le prime proprietà dei rami della geometria e generalmente forniscono notizie riguardanti gli enti primitivi. Ad esempio noi dopo aver introdotto la retta come concetto primitivo ammetteremo che dati due punti A e B esiste una e una sola retta che li contiene entrambi .
Tale proposizione è chiaramente indimostrabile dato che non solo non conosciamo alcun'altra proprietà delle rette alla quale appoggiare un qualunque ragionamento in merito ma addirittura ignoriamo per mancanza di definizione cosa siano effettivamente i punti e le rette.
Si osservi a tal proposito che il discorso geometrico ha grossolanamente un inizio del tipo seguente : noi intendiamo trattare di certi enti xyz di cui non diamo nessuna definizione ma dei quali precisiamo che godono delle proprietà abc . E' ovvio che non ha alcun senso il cercare di dimostrare tale proprietà (postulati). e ciò non solo per l'insistenza di proprietà precedenti cui appoggiare il ragionamento ma soprattutto perché i postulati esprimono certe caratteristiche soggettivamente attribuite ad enti di natura imprecisata.
Per esempio se dicessimo :"noi vogliamo ragionare su certi oggetti che supponiamo siano solidi di color rosso elettrizzati positivamente ecc.2 che significato avrebbe dimostrare che il colore di questi oggetti è rosso perché la scelta del colore è casuale.
Da quanto esposto dovrebbe risultare chiaro che i postulati fornendo una serie di precisazioni circa gli enti primitivi li delimitano e li caratterizzano togliendo loro buona parte di quella arbitrarietà che sembrava assoluta allorché essi erano stati introdotti. Si può asserire che i postulati danno una definizione implicita degli enti primitivi
geometria - i teoremi inversi
geometria - i teoremi inversi
Consideriamo l'implicazione logica espressa nel proverbio "chi dorme non piglia pesci".
Dall'ipotesi una persona dorme discende la tesi non piglia pesci.
Proviamo a rovesciare il discorso cioè a scambiare l'ipotesi con la tesi. Me viene fuori l'implicazione inversa chi non piglia pesci dorme ma questo non è esatto non tutti quelli che non pigliano pesci stanno dormendo.
Mentre se prendiamo il teorema " se due corde di un cerchio sono uguali esse hanno uguali distanze dal centro ".
Scambiando l'ipotesi con la tesi si ottiene il teorema inverso se due corde di un cerchio hanno uguali distanze dal centro sono uguali infatti anche questo teorema è vero.
Quando due teoremi uno inverso dell'altro sono entrambi veri si conviene enunciarli insieme facendo precedere l'enunciato di uno solo di essi dalla locazione condizione necessaria e sufficiente.
Non sempre per un teorema diretto ne esiste uno inverso.
Consideriamo l'implicazione logica espressa nel proverbio "chi dorme non piglia pesci".
Dall'ipotesi una persona dorme discende la tesi non piglia pesci.
Proviamo a rovesciare il discorso cioè a scambiare l'ipotesi con la tesi. Me viene fuori l'implicazione inversa chi non piglia pesci dorme ma questo non è esatto non tutti quelli che non pigliano pesci stanno dormendo.
Mentre se prendiamo il teorema " se due corde di un cerchio sono uguali esse hanno uguali distanze dal centro ".
Scambiando l'ipotesi con la tesi si ottiene il teorema inverso se due corde di un cerchio hanno uguali distanze dal centro sono uguali infatti anche questo teorema è vero.
Quando due teoremi uno inverso dell'altro sono entrambi veri si conviene enunciarli insieme facendo precedere l'enunciato di uno solo di essi dalla locazione condizione necessaria e sufficiente.
Non sempre per un teorema diretto ne esiste uno inverso.
lunedì 5 giugno 2017
geometria - i corollari
geometria - i corollari
in certi casi accade che, una volta dimostrato un teorema da questo conseguano altri teoremi in modo tanto immediato che le relative dimostrazioni possono essere del tutto omesse o appena accennate. tali proposizioni, che sono immediate conseguenze di un precedente teorema sono dette suoi corollari.
Ad esempio una volta dimostrato il teorema: "in un triangolo ad angolo maggiore corrisponde il lato maggior" di può subito dedurre il corollario: "l'ipotenusa di un triangolo rettangolo è maggiore di ciascuno dei due cateti".
si può ricordare che essendo retto l'angolo opposto all'ipotenusa esso è maggiore degli angoli opposti ai cateti che sono acuti.
Si noti che è piuttosto soggettivo lo stabilire se un teorema è conseguenza più o meno ovvia di un'altra preposizione ammessa in precedenza. Per questo motivo la distinzione tra teoremi veri e propri e corollari non riveste grande importanza logica ed è lasciata al giudizio di chi espone una teoria matematica.
Certe proprietà degli enti geometrici sono espresse da proporzioni non dimostrabili che chiameremo postulati o assiomi. Anche da tali proprietà discendono conseguenze del tutto immediate.
Esse pure vengono dette corollari.
in certi casi accade che, una volta dimostrato un teorema da questo conseguano altri teoremi in modo tanto immediato che le relative dimostrazioni possono essere del tutto omesse o appena accennate. tali proposizioni, che sono immediate conseguenze di un precedente teorema sono dette suoi corollari.
Ad esempio una volta dimostrato il teorema: "in un triangolo ad angolo maggiore corrisponde il lato maggior" di può subito dedurre il corollario: "l'ipotenusa di un triangolo rettangolo è maggiore di ciascuno dei due cateti".
si può ricordare che essendo retto l'angolo opposto all'ipotenusa esso è maggiore degli angoli opposti ai cateti che sono acuti.
Si noti che è piuttosto soggettivo lo stabilire se un teorema è conseguenza più o meno ovvia di un'altra preposizione ammessa in precedenza. Per questo motivo la distinzione tra teoremi veri e propri e corollari non riveste grande importanza logica ed è lasciata al giudizio di chi espone una teoria matematica.
Certe proprietà degli enti geometrici sono espresse da proporzioni non dimostrabili che chiameremo postulati o assiomi. Anche da tali proprietà discendono conseguenze del tutto immediate.
Esse pure vengono dette corollari.
geometria - i teoremi
geometria - i teoremi
"riscaldando un corpo solido si dilata"
Il prodursi del primo fatto implica il verificarsi del secondo. Per questo motivo questa frase prende il nome di implicazioni logiche o semplicemente implicazioni.
La prima delle situazioni considerate si chiama ipotesi. La seconda si dice tesi.
L'ipotesi riscaldo un corpo solido
la tesi il corpo si dilata.
Nelle implicazioni logiche di tipo matematico la dipendenza della tesi dalla relativa ipotesi non viene accettata perché la cosa è evidente o perché l'esperienza ripetuta ci prova che tale dipendenza effettivamente sussiste, bensì in virtù di un preciso ragionamento che viene detto dimostrazione.
Le implicazioni logiche che possono essere provate mediante una dimostrazione si chiamano teoremi.
In un teorema la proposizione che si intende dimostrare viene detta enunciato del teorema stesso.
"riscaldando un corpo solido si dilata"
Il prodursi del primo fatto implica il verificarsi del secondo. Per questo motivo questa frase prende il nome di implicazioni logiche o semplicemente implicazioni.
La prima delle situazioni considerate si chiama ipotesi. La seconda si dice tesi.
L'ipotesi riscaldo un corpo solido
la tesi il corpo si dilata.
Nelle implicazioni logiche di tipo matematico la dipendenza della tesi dalla relativa ipotesi non viene accettata perché la cosa è evidente o perché l'esperienza ripetuta ci prova che tale dipendenza effettivamente sussiste, bensì in virtù di un preciso ragionamento che viene detto dimostrazione.
Le implicazioni logiche che possono essere provate mediante una dimostrazione si chiamano teoremi.
In un teorema la proposizione che si intende dimostrare viene detta enunciato del teorema stesso.
i concetti primitivi - geometria
i concetti primitivi - geometria
Vogliamo ora mostrare come non sia possibile definire tutti i concetti che figurano in una data materia. In particolare ci interessa chiarire la definizione di tutti i concetti geometrici.
Quindi per definire un quadrato dobbiamo conoscere i concetti di angolo lato uguaglianza. Di conseguenza prima di parlare del quadrato dobbiamo precisare che " un quadrilatero è un poligono che ha quattro vertici " che "un suo lato è il segmento che per estremi due vertici consecutivi" ecc.
Ma anche queste definizioni presuppongono la conoscenza di altri termini geometrici (poligono vertice segmento) i quali pure possono essere introdotti solo mediante l'ausilio di altri enti che, a loro volta, sono definibili facendo riferimento a concetti precedentemente considerati.
Tale procedimento a ritroso col quale stabiliamo un possibile ordine secondo cui vanno introdotti e definiti i diversi termini del discorso geometrico non può evidentemente continuare all'infinito.
In altre parole è necessario che di alcuni concetti (detti concetti o enti primitivi) non venga data alcuna definizione,.
Essi costituiranno la base su cui costruire altre definizioni.
Vogliamo ora mostrare come non sia possibile definire tutti i concetti che figurano in una data materia. In particolare ci interessa chiarire la definizione di tutti i concetti geometrici.
Quindi per definire un quadrato dobbiamo conoscere i concetti di angolo lato uguaglianza. Di conseguenza prima di parlare del quadrato dobbiamo precisare che " un quadrilatero è un poligono che ha quattro vertici " che "un suo lato è il segmento che per estremi due vertici consecutivi" ecc.
Ma anche queste definizioni presuppongono la conoscenza di altri termini geometrici (poligono vertice segmento) i quali pure possono essere introdotti solo mediante l'ausilio di altri enti che, a loro volta, sono definibili facendo riferimento a concetti precedentemente considerati.
Tale procedimento a ritroso col quale stabiliamo un possibile ordine secondo cui vanno introdotti e definiti i diversi termini del discorso geometrico non può evidentemente continuare all'infinito.
In altre parole è necessario che di alcuni concetti (detti concetti o enti primitivi) non venga data alcuna definizione,.
Essi costituiranno la base su cui costruire altre definizioni.
domenica 4 giugno 2017
definizioni in geometria
definizioni in geometria
Una definizione è una frase nella quale si spiega qual è la natura di un certo ente e si attribuisce ad esso il nome che lo contraddistingue.
La definizione chiarisce qual è il significato dell'ente preso in esame utilizzando la conoscenza di altri enti (o concetti o cose).
Così per spiegare che cos'è il vento? possiamo dire che un movimento di masse d'aria dovuto a diverso riscaldamento delle diverse zone della terra.
che cos'è il quadrato ? un quadrato è un quadrilatero con i lati uguali e gli angoli uguali.
per spiegare che cos'è il vento abbiamo supposto che il lettore fosse a conoscenza dei vocaboli movimento, masse, aria, riscaldamento, Terra. Allo stesso modo la definizione che abbiamo dato del quadrato è intellegibile solo se sono noti i concetti di quadrilatero, lato angolo, uguaglianza.
Una definizione è una frase nella quale si spiega qual è la natura di un certo ente e si attribuisce ad esso il nome che lo contraddistingue.
La definizione chiarisce qual è il significato dell'ente preso in esame utilizzando la conoscenza di altri enti (o concetti o cose).
Così per spiegare che cos'è il vento? possiamo dire che un movimento di masse d'aria dovuto a diverso riscaldamento delle diverse zone della terra.
che cos'è il quadrato ? un quadrato è un quadrilatero con i lati uguali e gli angoli uguali.
per spiegare che cos'è il vento abbiamo supposto che il lettore fosse a conoscenza dei vocaboli movimento, masse, aria, riscaldamento, Terra. Allo stesso modo la definizione che abbiamo dato del quadrato è intellegibile solo se sono noti i concetti di quadrilatero, lato angolo, uguaglianza.
i fondamenti della geometria
i fondamenti della geometria
La geometria intuitiva ( cioè la geometria studiata col metodo intuitivo) cerca di stabilire le proprietà dei corpi e delle figure in base alla esperienza che ce ne dànno i nostri sensi, cioè in base all'osservazione attenta di corpi aventi forme particolari e di figure aventi certe caratteristiche. Da queste osservazioni sperimentali la geometria deriva le regole e le definizioni come generalizzazione suggerita dall'intuizione delle proprietà osservate.
La geometria razionale (cioè studiata con il metodo razionale) si riferisce invece a figure ideali che sono delle pure e semplici astrazioni della mente. Di esse noi troviamo nella realtà fisica delle imitazioni grossolane e approssimate.
Le proprietà di queste figure non vengono stabilite in base all'esperienza ma sono in virtù di precisi ragionamenti che trascurano tutto ciò che in particolare ha la figura presa in esame e si basano soltanto sulle sue proprietà generali. In tal modo il ragionamento assume un carattere universale. Cioè senza possibilità di errore tanto per quella figura quanto per tutte le altre che godono delle stesse proprietà.
Geometria intuitiva e geometria razionale
La geometria intuitiva ( cioè la geometria studiata col metodo intuitivo) cerca di stabilire le proprietà dei corpi e delle figure in base alla esperienza che ce ne dànno i nostri sensi, cioè in base all'osservazione attenta di corpi aventi forme particolari e di figure aventi certe caratteristiche. Da queste osservazioni sperimentali la geometria deriva le regole e le definizioni come generalizzazione suggerita dall'intuizione delle proprietà osservate.
La geometria razionale (cioè studiata con il metodo razionale) si riferisce invece a figure ideali che sono delle pure e semplici astrazioni della mente. Di esse noi troviamo nella realtà fisica delle imitazioni grossolane e approssimate.
Le proprietà di queste figure non vengono stabilite in base all'esperienza ma sono in virtù di precisi ragionamenti che trascurano tutto ciò che in particolare ha la figura presa in esame e si basano soltanto sulle sue proprietà generali. In tal modo il ragionamento assume un carattere universale. Cioè senza possibilità di errore tanto per quella figura quanto per tutte le altre che godono delle stesse proprietà.
origini della geometria
origini della geometria
La parola geometria deriva dal greco e significa misurazione della terra (Ghe = terra e metron =misura) .
Nacque per esigenza nell'antichità di stabilire regole che fornissero la misura dell'estensione delle loro terre.
Non vi è però una testimonianza certa che confermi l'uso della geometria nelle civiltà pre-egizie.
Possiamo affermare con sicurezza che gli antichi Egiziani possedevano alcuni elementi di questa materia.
Lo documentano diversi papiri e in particolare il papiro di Rgind ( della lunghezza di circa 20 metri e che si conserva nel British Museum di Londra ( nel quale è contenuto il libro di calcolo di Ahmes così chiamato lo scriba che trascrisse un teso che già aveva alcuni secoli di vita. In esso sono riportate le regole per la misura di campi quadrangolari e triangolari nonché elementi del calcolo con le frazioni e misure di certi solidi.
Notizie sulle conoscenze geometriche degli antichi Egizi ci provengono da Erodoto e da Proclo.
Quest'ultimo è considerato il più autorevole storico delle antiche matematiche così scrive : "seguendo la tradizione generale diremo che gli Egiziani furono i primi inventori della geometria e che essa nacque dalla misurazione dei campi che essi dovevano sempre rinnovare per le inondazioni del Nilo che cancellavano tutti i confini delle proprietà".
Ci risulta che gli Egiziani conoscevano il teorema di Pitagora sono in un caso particolare e precisamente sapevano che un triangolo con i lati lunghi 3, 4 , 5 volte una certa unità di misura è rettangolo.
Essi usavano questa loro conoscenza per costruire sul terreno con corde e picchetti un triangolo di tale tipo in questo modo disegnavano angoli retti che servivano come traccia per la costruzione delle fondamenta degli edifici e templi.
Ciò conferma il pensiero di Proclo secondo cui la geometria egiziana aveva solo carattere pratico.
Solo più tardi nell'antica Grecia la geometria si sviluppò come scienza pura e venne studiata in modo autonomo prescindendo dai problemi pratici. I greci riorganizzarono l'intero edificio geometrico passando per primi da una esposizione frammentaria ad una rigorosa. L'opera fondamentale è costruita dagli elementi di Euclide.
Le chiare e ordinate pagine di questo matematico del III secolo a.C. sono state per oltre venti secoli un vero e proprio modello per tutti gli studiosi.
Proprio per l'importanza dell'opera di Euclide dividiamo la storia in due periodi: pre-euclideo e euclideo.
La parola geometria deriva dal greco e significa misurazione della terra (Ghe = terra e metron =misura) .
Nacque per esigenza nell'antichità di stabilire regole che fornissero la misura dell'estensione delle loro terre.
Non vi è però una testimonianza certa che confermi l'uso della geometria nelle civiltà pre-egizie.
Possiamo affermare con sicurezza che gli antichi Egiziani possedevano alcuni elementi di questa materia.
Lo documentano diversi papiri e in particolare il papiro di Rgind ( della lunghezza di circa 20 metri e che si conserva nel British Museum di Londra ( nel quale è contenuto il libro di calcolo di Ahmes così chiamato lo scriba che trascrisse un teso che già aveva alcuni secoli di vita. In esso sono riportate le regole per la misura di campi quadrangolari e triangolari nonché elementi del calcolo con le frazioni e misure di certi solidi.
Notizie sulle conoscenze geometriche degli antichi Egizi ci provengono da Erodoto e da Proclo.
Quest'ultimo è considerato il più autorevole storico delle antiche matematiche così scrive : "seguendo la tradizione generale diremo che gli Egiziani furono i primi inventori della geometria e che essa nacque dalla misurazione dei campi che essi dovevano sempre rinnovare per le inondazioni del Nilo che cancellavano tutti i confini delle proprietà".
Ci risulta che gli Egiziani conoscevano il teorema di Pitagora sono in un caso particolare e precisamente sapevano che un triangolo con i lati lunghi 3, 4 , 5 volte una certa unità di misura è rettangolo.
Essi usavano questa loro conoscenza per costruire sul terreno con corde e picchetti un triangolo di tale tipo in questo modo disegnavano angoli retti che servivano come traccia per la costruzione delle fondamenta degli edifici e templi.
Ciò conferma il pensiero di Proclo secondo cui la geometria egiziana aveva solo carattere pratico.
Solo più tardi nell'antica Grecia la geometria si sviluppò come scienza pura e venne studiata in modo autonomo prescindendo dai problemi pratici. I greci riorganizzarono l'intero edificio geometrico passando per primi da una esposizione frammentaria ad una rigorosa. L'opera fondamentale è costruita dagli elementi di Euclide.
Le chiare e ordinate pagine di questo matematico del III secolo a.C. sono state per oltre venti secoli un vero e proprio modello per tutti gli studiosi.
Proprio per l'importanza dell'opera di Euclide dividiamo la storia in due periodi: pre-euclideo e euclideo.
venerdì 26 maggio 2017
ripasso aritmetica I°
ripasso aritmetica
i numeri razionali assoluti sono tutti numeri interi e frazionari
ADDIZIONE
a) proprietà commutativa : la somma di più numeri non cambia se si cambia il numero degli addendi
b) proprietà associativa : la somma di più numeri non cambia se a due o più addendi si sostituisce la loro somma
c) proprietà dissociativa: La somma di più numeri non cambia se un suo addendo viene sostituito con due o più altri addendi la cui somma sia uguale all'addendo sostituito.
La somma di qualsiasi numero e dello zero è uguale al numero considerato.
MOLTIPLICAZIONE
a) proprietà commutativa : Il prodotto di due o più numeri non dipende dall'ordine dei fattori
b) proprietà associativa : il prodotto di due o più numeri non cambia se a due o a più fattori si sostituisce il loro prodotto
c) proprietà dissociativa : il prodotto di più numeri non cambia se un fattore si sostituisce con due o più fattori il cui prodotto sia uguale al fattore sostituito
d) proprietà distributiva : Il prodotto di una somma per un numero è uguale alla somma dei prodotti che si ottengono moltiplicando ordinatamente gli addendi della somma data per quel numeri
EQUIVALENZE
unità di misura
derivate dal metro
Mm miriametro 10.000 metri
km chilometro 1.000 metri
hm ettometro 100 metri
dam decametro 10 metri
m metro 1 metro
dm decimetro 0,1 metro
cm centimetro 0.01 metro
mm millimetro 0,001 metro
per la superficie diventeranno km^2 , m^2 ecc. nei solidi Km^3 m^3 ecc.
misure agrarie
ha ettaro 10.000 metri quadrati
a ara 100 metri quadrati
ca centiara 1 metro quadrato
derivati dal litro
kl chilolitro 1000 litri
hl ettolitro 100 litri
dal decalitro 10 litri
l litro 1 litro
dl decilitro 0,1 litro
cl centilitro 0,01 litro
ml millilitro 0.001 litro
derivati dal grammo
t tonnellata 1000.000 grammi
q quintale 100.000 grammi
Mg miriagrammo 10.000 grammi
kg chilogrammo 1000 grammi
hg ettogrammo 100 grammi
dag decagrammo 10 grammi
g grammo 1 grammo
dg decigrammo 0,1 grammi
cg centigrammo 0,01 grammi
mg millligrammo 0,001 grammi
peso specifico
Ps = P:V peso specifico = peso : volume
P= Ps x V peso = peso specifico x volume
V= P: Ps volume = perso : peso specifico
i numeri primi sono numeri divisibili per 1 o per se stessi
scomporre un numero in fattori primi significa cercare i fattori primi contenuti esattamente nel numero dato e scrivere il numero in stesso come prodotto di divisori primi
un numero è divisibile per un altro quando, scomposti entrambi in fattori primi il primo contiene tutti i fattori del secondo ognuno con esponente maggiore o uguale a quello con cui figura nel secondo
MCD = MASSIMO COMUN DIVISORE
il più grande numero contenuti in due o più numeri dati si trova scomponendo in fattori primi moltiplicando tra loro i fattori comuni con il minimo esponente
MCM = MINIMO COMUNE MULTIPLO
il minor numero che contiene tutti i numeri dati si calcola scomponendo i numero in fattori primi e si moltiplicano fra lor i fattori comuni e non comuni con il massimo esponente
UNITA' FRAZIONARIA
ciascuna delle parti ottenute dividendo l'unità intera in un certo numero di parti
il numero delle parti prese in considerazione è numeratore
il numero delle parti in cui è divisa l'unità è denominatore
un unità frazionaria con stesso numeratore e denominatore è una parte intera
frazione propria il numeratore è minore del denominatore
frazione improprio il numeratore è maggiore del denominatore
frazione apparente il numeratore è multiplo del denominatore
Il valore di una frazione non cambia se moltiplichiamo o dividiamo i due termini per uno stesso numero
i numeri razionali assoluti sono tutti numeri interi e frazionari
ADDIZIONE
a) proprietà commutativa : la somma di più numeri non cambia se si cambia il numero degli addendi
b) proprietà associativa : la somma di più numeri non cambia se a due o più addendi si sostituisce la loro somma
c) proprietà dissociativa: La somma di più numeri non cambia se un suo addendo viene sostituito con due o più altri addendi la cui somma sia uguale all'addendo sostituito.
La somma di qualsiasi numero e dello zero è uguale al numero considerato.
MOLTIPLICAZIONE
a) proprietà commutativa : Il prodotto di due o più numeri non dipende dall'ordine dei fattori
b) proprietà associativa : il prodotto di due o più numeri non cambia se a due o a più fattori si sostituisce il loro prodotto
c) proprietà dissociativa : il prodotto di più numeri non cambia se un fattore si sostituisce con due o più fattori il cui prodotto sia uguale al fattore sostituito
d) proprietà distributiva : Il prodotto di una somma per un numero è uguale alla somma dei prodotti che si ottengono moltiplicando ordinatamente gli addendi della somma data per quel numeri
EQUIVALENZE
unità di misura
derivate dal metro
Mm miriametro 10.000 metri
km chilometro 1.000 metri
hm ettometro 100 metri
dam decametro 10 metri
m metro 1 metro
dm decimetro 0,1 metro
cm centimetro 0.01 metro
mm millimetro 0,001 metro
per la superficie diventeranno km^2 , m^2 ecc. nei solidi Km^3 m^3 ecc.
misure agrarie
ha ettaro 10.000 metri quadrati
a ara 100 metri quadrati
ca centiara 1 metro quadrato
derivati dal litro
kl chilolitro 1000 litri
hl ettolitro 100 litri
dal decalitro 10 litri
l litro 1 litro
dl decilitro 0,1 litro
cl centilitro 0,01 litro
ml millilitro 0.001 litro
derivati dal grammo
t tonnellata 1000.000 grammi
q quintale 100.000 grammi
Mg miriagrammo 10.000 grammi
kg chilogrammo 1000 grammi
hg ettogrammo 100 grammi
dag decagrammo 10 grammi
g grammo 1 grammo
dg decigrammo 0,1 grammi
cg centigrammo 0,01 grammi
mg millligrammo 0,001 grammi
peso specifico
Ps = P:V peso specifico = peso : volume
P= Ps x V peso = peso specifico x volume
V= P: Ps volume = perso : peso specifico
i numeri primi sono numeri divisibili per 1 o per se stessi
scomporre un numero in fattori primi significa cercare i fattori primi contenuti esattamente nel numero dato e scrivere il numero in stesso come prodotto di divisori primi
un numero è divisibile per un altro quando, scomposti entrambi in fattori primi il primo contiene tutti i fattori del secondo ognuno con esponente maggiore o uguale a quello con cui figura nel secondo
MCD = MASSIMO COMUN DIVISORE
il più grande numero contenuti in due o più numeri dati si trova scomponendo in fattori primi moltiplicando tra loro i fattori comuni con il minimo esponente
MCM = MINIMO COMUNE MULTIPLO
il minor numero che contiene tutti i numeri dati si calcola scomponendo i numero in fattori primi e si moltiplicano fra lor i fattori comuni e non comuni con il massimo esponente
UNITA' FRAZIONARIA
ciascuna delle parti ottenute dividendo l'unità intera in un certo numero di parti
il numero delle parti prese in considerazione è numeratore
il numero delle parti in cui è divisa l'unità è denominatore
un unità frazionaria con stesso numeratore e denominatore è una parte intera
frazione propria il numeratore è minore del denominatore
frazione improprio il numeratore è maggiore del denominatore
frazione apparente il numeratore è multiplo del denominatore
Il valore di una frazione non cambia se moltiplichiamo o dividiamo i due termini per uno stesso numero
mercoledì 29 marzo 2017
gli insiemi matematici scuola superiore
gli insiemi matematici scuola superiore
Concetto di insieme
Sono fondamentali per la matematica moderno sia il concetto di insieme si a quello di elemento dell'insieme che noi assumiamo come concetti primitivi ossia non li definiamo in quanto costituiscono per noi il punto di partenza per definirne altri. Tuttavia riteniamo utile illustrare i due concetto con le parole stesse usate da Cantor : con i nome di insieme intendiamo ogni raccolta classe aggregato totalità I di oggetti ben determinati e distinti della nostra intuizione o del nostro pensiero: Tali oggetti vengono chiamati gli elementi di I.
Gli elementi di un insieme (astratti o concreti) possono essere di natura qualsiasi purchè ben determinati; cioè che si sappia decidere senza ambiguità se un elemento appartiene o no all'insieme considerato: Pertanto un insieme reterà individuato quando si conoscono singolarmente gli elementi o perchè effettivamente elencati o perché assegnati mediante una proprietà caratteristica.
oppure può essere individuato assegnando la proprietà caratteristica di suoi elementi (numeri naturali maggiori di 2 e minori di 7)
I = 2< x < 7
(che si legge insieme formato dagli elementi x tali che siano compresi tra 2 e 7 )
non sarebbe esauriente perché non è indicato l'ambiente in cui bisogna trarre gli elementi x infatti x potrebbe indifferentemente rappresentare un numero naturale o solamente pari o solamente dispari o un numero razionale ecc.
La totalità degli elementi da cui bisogna trare quelli occorrenti per formare un insieme si dice insieme ambiente o insieme universo che indicheremo con U
E' molto comoda la rappresentazione grafica degli insiemi realizzata con i diagrammi di Venn secondo cui un insieme è raffigurato da una linea chiusa indicante I
Concetto di insieme
Sono fondamentali per la matematica moderno sia il concetto di insieme si a quello di elemento dell'insieme che noi assumiamo come concetti primitivi ossia non li definiamo in quanto costituiscono per noi il punto di partenza per definirne altri. Tuttavia riteniamo utile illustrare i due concetto con le parole stesse usate da Cantor : con i nome di insieme intendiamo ogni raccolta classe aggregato totalità I di oggetti ben determinati e distinti della nostra intuizione o del nostro pensiero: Tali oggetti vengono chiamati gli elementi di I.
Gli elementi di un insieme (astratti o concreti) possono essere di natura qualsiasi purchè ben determinati; cioè che si sappia decidere senza ambiguità se un elemento appartiene o no all'insieme considerato: Pertanto un insieme reterà individuato quando si conoscono singolarmente gli elementi o perchè effettivamente elencati o perché assegnati mediante una proprietà caratteristica.
oppure può essere individuato assegnando la proprietà caratteristica di suoi elementi (numeri naturali maggiori di 2 e minori di 7)
I = 2< x < 7
(che si legge insieme formato dagli elementi x tali che siano compresi tra 2 e 7 )
non sarebbe esauriente perché non è indicato l'ambiente in cui bisogna trarre gli elementi x infatti x potrebbe indifferentemente rappresentare un numero naturale o solamente pari o solamente dispari o un numero razionale ecc.
La totalità degli elementi da cui bisogna trare quelli occorrenti per formare un insieme si dice insieme ambiente o insieme universo che indicheremo con U
E' molto comoda la rappresentazione grafica degli insiemi realizzata con i diagrammi di Venn secondo cui un insieme è raffigurato da una linea chiusa indicante I
lunedì 27 marzo 2017
monomi
Si dice monomio qualunque espressione algebrica in cui non figurano addizioni o sottrazioni
per esempio
10 a^3b e (2)a(+5)b
vediamo che ogni monomio si può presentare come il prodotto di un solo fattore numerico e di potenze di basi diverso.
2a^2b^2c
In questo caso il monomio si dice ridotto alla forma normale.
Si dice coefficiente di un monomio ridotto alla forma normale il suo fattore numerico e parte letterale il prodotto dei fattori letterali coi loro esponenti.
Un monomio ridotto in forma normale si dice intero se le lettere non figurano al denominatore cioè se tutte le sue lettere hanno esponente positivo in caso contrario si dice frazionario
monomi interi
5a^2 - 3 x^2yz
4
monomi frazionari
2a^2 - 3y
b^3 4x
si dice grado di un monomio intero la somma degli esponenti delle sue lettere
si ricordi che ogni lettera priva di esponente va considerata come potenza avente per esponente 1
7ab^2c^3 è 1+2+3 = 6
Il grado ora definito si dice grado complessivo.
Si dice invece grado di un monomio intero rispetto ad una lettera l'esponente di quella lettera
per esempio
3 a^3b^2c^
è di grado 3 rispetto alla lettera a
Se in un monomio manca una data lettera si dice di grado 0 rispetto a quella lettera
per esempio
3ab^2c^0 è zero rispetto alla lettera c che corrisponde a 1
per esempio
10 a^3b e (2)a(+5)b
vediamo che ogni monomio si può presentare come il prodotto di un solo fattore numerico e di potenze di basi diverso.
2a^2b^2c
In questo caso il monomio si dice ridotto alla forma normale.
Si dice coefficiente di un monomio ridotto alla forma normale il suo fattore numerico e parte letterale il prodotto dei fattori letterali coi loro esponenti.
Un monomio ridotto in forma normale si dice intero se le lettere non figurano al denominatore cioè se tutte le sue lettere hanno esponente positivo in caso contrario si dice frazionario
monomi interi
5a^2 - 3 x^2yz
4
monomi frazionari
2a^2 - 3y
b^3 4x
si dice grado di un monomio intero la somma degli esponenti delle sue lettere
si ricordi che ogni lettera priva di esponente va considerata come potenza avente per esponente 1
7ab^2c^3 è 1+2+3 = 6
Il grado ora definito si dice grado complessivo.
Si dice invece grado di un monomio intero rispetto ad una lettera l'esponente di quella lettera
per esempio
3 a^3b^2c^
è di grado 3 rispetto alla lettera a
Se in un monomio manca una data lettera si dice di grado 0 rispetto a quella lettera
per esempio
3ab^2c^0 è zero rispetto alla lettera c che corrisponde a 1
Espressioni algebriche
Espressioni algebriche
estendendo una locuzione introdotta nell' aritmetica si chiama espressione algebrica un insieme di qualunque dei numeri relativi rappresentanti anche da lettere legati tra loro da segni di operazioni. Un'espressione algebrica si dice razionale quando le operazioni da eseguirsi sulle lettere sono soltanto quelle di addizione sottrazione moltiplicazione e divisione.
Il nome deriva dal fatto che le quattro operazioni nominate si dicono. Razionali, perché quando si opera con s su numeri razionali interi e frazionari si ottengono sempre numeri razionali. Un'espressione si dice intera se fai segni di operazione da eseguirsi sulle lettere non compare quello di divisione in caso contrario l'espressione si dice frazionaria.
Attribuire a una lettera che compare in un'espressione algebrica un dato valore significa sostituire a quella lettera il numero dato. Quando le lettere di un'espressione algebrica si sostituiscono dei numeri relativi e si eseguono tutte le operazioni indicate si ottiene come risultato un numero relativo che si dice per valore numerico delle espressioni algebrica per i dati valori delle lettere. Naturalmente si suppone che per i dati valori delle lettere le operazioni indicate siano possibile altrimenti le espressioni perde di significato
Si consideri l'espressione
-3a + 2b^2 - 5 c
e si voglia calcolare il valore numerico attribuendo alle lettere i valori
a = - 2 b= + 1 c = - 3
3 4
facendo la sostituzione
- 3 (-2) + 2(+1)^2 - 5(-3)
3 4
facendo i calcoli
6 + 2 + 15= 359
9 4 36
estendendo una locuzione introdotta nell' aritmetica si chiama espressione algebrica un insieme di qualunque dei numeri relativi rappresentanti anche da lettere legati tra loro da segni di operazioni. Un'espressione algebrica si dice razionale quando le operazioni da eseguirsi sulle lettere sono soltanto quelle di addizione sottrazione moltiplicazione e divisione.
Il nome deriva dal fatto che le quattro operazioni nominate si dicono. Razionali, perché quando si opera con s su numeri razionali interi e frazionari si ottengono sempre numeri razionali. Un'espressione si dice intera se fai segni di operazione da eseguirsi sulle lettere non compare quello di divisione in caso contrario l'espressione si dice frazionaria.
Attribuire a una lettera che compare in un'espressione algebrica un dato valore significa sostituire a quella lettera il numero dato. Quando le lettere di un'espressione algebrica si sostituiscono dei numeri relativi e si eseguono tutte le operazioni indicate si ottiene come risultato un numero relativo che si dice per valore numerico delle espressioni algebrica per i dati valori delle lettere. Naturalmente si suppone che per i dati valori delle lettere le operazioni indicate siano possibile altrimenti le espressioni perde di significato
Si consideri l'espressione
-3a + 2b^2 - 5 c
e si voglia calcolare il valore numerico attribuendo alle lettere i valori
a = - 2 b= + 1 c = - 3
3 4
facendo la sostituzione
- 3 (-2) + 2(+1)^2 - 5(-3)
3 4
facendo i calcoli
6 + 2 + 15= 359
9 4 36
lunedì 23 gennaio 2017
frazioni decimali e numeri decimali
frazioni decimali e numeri decimali
FRAZIONI DECIMALI
Una frazione il cui denominatore sia 10 100 1000 ecc. cioè una potenza di 10 si dice frazione decimale. sono ad esempio frazioni decimali
9 13
10 100
le frazioni decimali
1 1
10 100
si dicono rispettivamente unita frazionarie decimali del primo ordine o dei decimi del secondo ordine o dei centesimi ecc.
e si indicano come voi già sapete con le scritture
0,1 0,01 ecc.
NUMERI DECIMALI
Poiché una frazione rappresenta il quoto della divisione del suo numeratore per il denominatore
3273 = 3273 :100 = 32,73
100
cioè
ogni frazione decimale si può porre sotto forma di numero decimale scrivendo il solo numeratore separando in esso con la virgola partendo da destra verso sinistra tante cifre decimali quanti sono gli zeri del denominatore.
Se è necessario si pongono degli zeri alla sinistra del numeratore. Ciò quando il numero delle cifre del numeratore e minore di quelle del denominatore si ha per esempio
37 = 0,037
1000
Un numero decimale è uguale alla frizione avente per numeratore un numero intero ottenuto sopprimendo in esso la virgola e per denominatore la cifra 1 seguita da tanti zeri quanti sono le cifre decimali del numero decimale considerato.
3,72 = 372
100
FRAZIONI DECIMALI
Una frazione il cui denominatore sia 10 100 1000 ecc. cioè una potenza di 10 si dice frazione decimale. sono ad esempio frazioni decimali
9 13
10 100
le frazioni decimali
1 1
10 100
si dicono rispettivamente unita frazionarie decimali del primo ordine o dei decimi del secondo ordine o dei centesimi ecc.
e si indicano come voi già sapete con le scritture
0,1 0,01 ecc.
NUMERI DECIMALI
Poiché una frazione rappresenta il quoto della divisione del suo numeratore per il denominatore
3273 = 3273 :100 = 32,73
100
cioè
ogni frazione decimale si può porre sotto forma di numero decimale scrivendo il solo numeratore separando in esso con la virgola partendo da destra verso sinistra tante cifre decimali quanti sono gli zeri del denominatore.
Se è necessario si pongono degli zeri alla sinistra del numeratore. Ciò quando il numero delle cifre del numeratore e minore di quelle del denominatore si ha per esempio
37 = 0,037
1000
Un numero decimale è uguale alla frizione avente per numeratore un numero intero ottenuto sopprimendo in esso la virgola e per denominatore la cifra 1 seguita da tanti zeri quanti sono le cifre decimali del numero decimale considerato.
3,72 = 372
100
Iscriviti a:
Post (Atom)